关注数学发展弘扬科学精神

关注数学发展,弘扬科学精神,专注数学科普

您的位置:主页 > 数学史化 > 日本现代数学发展历程及其启示(下)

日本现代数学发展历程及其启示(下)

作者:数学扫地僧发布日期:2019-11-06 11:32浏览次数: 来源:微信公众号

日本数学在近一百年来获得了长足发展,涌现一大批世界顶尖数学家,如小平邦彦、广中平佑、森重文、伊藤清等。更可贵的是,这些数学家的教育基本上都是在本土完成的!我们将按照时间一一介绍日本数学的发展,期待从日本数学的发展中获得一些数学教育的启示。

然而随着日本在太平洋战场的接连失败,国内民不聊生,此时的数学研究和对外交流几乎全面中断,比较有意思的是这时候日本的一艘潜水艇不知从哪里搞了一份海森堡关于量子力学的论文回来,还被当成了机密文件。由于美军的接连轰炸,小平邦彦也只能躲到了乡下,开始了他与世隔绝的艰难研究,与欧洲此时的塞尔伯格一样,成为了战火之中的孤岛数学家。在乡下,他首先研究了外尔之前的论文,此后在艰苦卓绝的研究下,得到了一系列关于多变量正则函数和调和积分的成果。但由于战争的原因,直到1949年他去美国访问之前,都一直默默无闻,不为数学界所知。所幸的是,小平邦彦遇到了他的“贵人”—角谷静夫。

日本现代数学发展历程及其启示(下)

图八 角谷静夫

角谷静夫(1911~2004)早年从东北大学数学科毕业后就到了美国留学并定居,他主要研究无限维空间上的测度,以“角谷静夫距离”闻名于世。战争结束后,角谷静夫以日侨身份被遣返回日本,之后便结识了小平邦彦。角谷静夫在美国的时候,曾在普林斯顿高等研究院当过一段时间助教,对当时正在普林斯顿的冯·诺依曼和外尔的工作比较熟悉,所以他一下子就看出了小平邦彦相关论文的巨大价值。一番不懈努力之后,他托人将论文送到了外尔手中。虽然小平邦彦当时默默无闻,但外尔看了他的论文之后大加赞赏,立即邀请他前往普林斯顿访问研究。事实也证明,外尔不仅是数学大师,也是发现和珍惜人才的伯乐。

日本现代数学发展历程及其启示(下)

图九 外尔

1949年9月,小平邦彦来到了当时的数学中心普林斯顿。在这里,他多年的苦心孤诣终于转化成了累累硕果。在这几年间,他推广了重要的黎曼-罗赫定理,又对代数曲面的奇点做了巧妙处理,得到了着名的小平邦彦奇点消没定理。他的一系列工作使得他成为了现代复代数几何的奠基人之一,这一点我们在上一篇关于普林斯顿数学发展的文章中也提到过。最终凭借这些成果,小平邦彦荣获1954年菲尔兹奖。之后他又在复流形,复曲面上做出了许多开创性工作,因此又荣获1984年沃尔夫数学奖,成为了少有的双奖得主。必须要指出的是,1967年小平邦彦选择回到了日本东京大学,为日本数学发展做出了非常多的贡献。

日本现代数学发展历程及其启示(下)

图十 菲尔兹奖

和小平邦彦同时代的伊藤清(1915~2008)也是日本现代数学发展的另一个突出代表。伊藤清与小平邦彦一样,毕业于东京大学。1944年他率先对布朗运动引进随机积分,从而建立随机分析这个新分支,1951年他引进计算随机积分的伊藤公式,后推广成一般的变元替换公式,成为了这一领域的基础定理。此外,伊藤清还发展了一般马尔科夫过程的随机微分方程理论,他还是最早研究流形上扩散过程的学者之一。伊藤清的成果于20世纪80年代以后在金融领域得到广泛应用,他因此被称为“华尔街最有名的日本人”。1952年起,伊藤清在京都大学任教授直到1979年退休。而除了东京大学外,京都大学也是日本数学的中心之一,主攻代数几何,而这要归功于上面提到过的秋月康夫等人。

日本现代数学发展历程及其启示(下)

图十一 伊藤清

20世纪50年代,在战后及其困难的情况下,秋月康夫还是克服一切艰难险阻组织年轻人研究代数几何。这个集体中就诞生了后来着名的永田雅宜(1927~2008)和广中平祐(1931~)。前者以给出希尔伯特第14问的反例而着称,而广中平祐则以代数几何中奇点消解的杰出工作荣获1970年菲尔兹奖。

日本现代数学发展历程及其启示(下)

图十二 广中平祐

战后日本数学的转折点在1955年,这一年,东京举办了一次日本期盼了太久的国际数学会议,许多着名数学家来访和做报告,代数几何的绝对权威韦伊和塞尔也在其中。会上,许多日本年轻人都做了报告,展示了日本数学年轻一代的想法和实力,其中就有后来着名的志村五郎和谷山丰。韦伊和塞尔顺便访问了京都大学,一年之后,另一位代数几何大师扎里斯基访问日本,一口气做了14场报告。这些给了广中平祐极大的震撼和鼓舞,让他下定决心研究代数几何中的困难问题。后来他来到哈佛大学,在扎里斯基指导下拿到博士学位并进行研究工作,之后便有了他在这方面杰出的工作。但比较有意思的是,传说他的研究生导师称广中平祐“智商不足”。

日本现代数学发展历程及其启示(下)

图十三 扎里斯基

广中平祐之后,京都大学的代数几何研究并没有停止,而是在20年后再次诞生了一位菲尔兹获得者-森重文(1951~)。森重文早年在永田雅宜手下学习代数几何,获得了数学博士学位,1977年到1980年期间在哈佛大学访问研究,后来又回到日本。森重文的贡献很多,用一句话来概括就是完成了3维代数簇的粗分类。在70年代,3维簇的分类被认为基本上是不可想象的。而森重文则勇于面对这项浩大工程,为此他制定了一个纲领,这个纲领被称为森重文纲领或极小模型纲领。10多年间他引进一系列的专门技巧,克服了一个又一个的困难,最终在1988年完成了这个纲领。

日本现代数学发展历程及其启示(下)

图十四 森重文

除了以上这些之外,还有吉田耕作的泛函分析与半群工作,佐藤干夫的超函数论,加藤敏夫的微分算子摄动理论等分析学方面上的成就也享有广泛的国际声誉,都是世界级的成果。

正是一代又一代的努力,日本数学在20世纪后半期达到高峰,一度挤掉战后分裂的德国,成为数学四大强国之一。明治维新之前几十年,日本所学的数学几乎全部来自中国,水平整体上落后于中国。但短短的几十年间,情况完全逆转,到甲午中日战争时,日本数学水平已经全面超越中国。虽然近一百年来,我国的数学得到了长足发展,但仍与日本有不小的差距。而关于我国现代数学的发展,以后将在另一篇文章中介绍。

日本数学发展历史来看,日本数学主要有以下几个特点:1、善于向外学习;2、重视数学教育和人才培养;3、凝聚力强,主流数学家多为本国服务;4、战前受德国数学影响较大,战后全面受美国数学影响;5、主要研究方向为代数。如果要给日本数学打上标签,我觉得“低调”和“脚踏实地”比较合适,小平邦彦抄书的故事可能很多人都知道,并不是说他笨,而是体现了一种认真执着的精神。这些优点也是我们应该学习的,毕竟我们的基础科学研究还全面落后于日本。

最后,借用一段话来做为本文的结束:

“我们要搞原始创新,就必须更加重视基础研究,没有扎实的基础研究,就不可能有原始创新。国际数学界的最高奖项菲尔兹奖,中国至今没有一人获得。现在IT业发展迅勐,源代码靠什么?靠数学!我们造大飞机,但发动机还要买国外的,为什么?数学基础不行。……,所以,大学要从百年大计着眼,确实要有一批人坐得住冷板凳的人。”

希望这样坐得住冷板凳的人越来越多。


(声明:本文仅代表作者观点,不代表本站观点,仅做陈列之用)

[责编:雨滴]

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

欢迎扫描关注我们的微信公众平台!

欢迎扫描关注我们的微信公众平台!