DNA双螺旋结构和蛋白质空间结构的发现,标志进入了分子生物学时代。当代数学在DNA序列测定技术和建造生物学模型,以及生命本质研究方面具有重要作用。
数学常常被人们视为工具,它也的确是非常有用的工具。但是,只要是作为工具,就具有可替换性。“条条道路通罗马”。工具就是道路,可以选择途径A,也可以选择途径B,只要能到达目的地就行。当然,有的可能是捷径,有的可能是弯路,但它们毕竟都不是唯一的。就如同过去的生命科学研究,没有数学也一样取得了不错的成绩。数学的应用显然会对现在和今后的生物学研究有帮助,但生物学家不用数学行不行呢?
人类对自然和生命的关注,通常体现在两个方面的问题:构成世间万物的本质是什么以及如何去认识和探寻这种本质。前一类问题属于本体论,后一类问题则属于认识论。如果采用这样的假设:生命的本质最终是体现在数学规律的构成上,那么,没有数学显然我们就不能真正和彻底地揭示出生命的本质。
图三 DNA模型发现人之一威尔金斯
DNA和蛋白质是两类最重要的生物大分子,它们通常都是由众多的基本元件(核苷酸、氨基酸)相互联结而成的长链分子。但是,它们的空间形状并非是一条平直的线条,而是一个规则的“螺旋管”。尽管在20世纪中叶人们就发现了DNA双螺旋和蛋白质a螺旋结构,但至今为止,人们还是难以解释,为什么大自然要选择“螺旋形”作为这些生物大分子的结构基础。
不久前,美国和意大利的-组科学家,利用离散几何的方法研究了致密线条的“最大包装”(optimal packing)问题,得到的答案是,在一个体积定的容器里,能够容纳的最长线条的形状是螺旋形。研究者们意识到,“天然形成的蛋白质正是这样的几何形状”。显然由此我们能够窥见生命选择了螺旋形作为其空间结构基础的数学原因:在最小空间内容纳最长的分子。凡是熟悉分子生物学和细胞生物学的人都知道,生物大分子的包装是生命的一个必要过程。作为遗传物质载体的DNA,其线性长度远远大于容纳它的细胞核的直径。例如构成条人染色体的DNA的长度是其细胞核的数千倍。因此通常都要对DNA链进行多次的折叠和包扎,使长约5厘米的DNA双螺旋链变成大约5微米的致密的染色体。由此我们可以认为,生命是遵循“最大包装”的数学原理来构造自己的生物大分子的。
细胞是生命的基本组成单元和功能单元,而细胞分裂(又称为细胞增殖)是细胞最基本和最重要的活动之一。完成一次细胞分裂的活动称为细胞周期。不同物种的细胞周期的时间长短是不一样的,有着严格的调控。那么,是什么构成了细胞周期的“时钟”呢?最近的研究表明,对于酵母细胞而言,种细胞周期调控蛋白的磷酸化程度有可能被用作细胞周期运行的“时钟”。这种被称为Sicl的蛋白质上有9个位置可以被蛋白激酶CDK进行磷酸化。当它被加上第1个磷酸基团至第5个磷酸基团的时候,其分子的行为没有出现变化。但是,一旦被加上第6个磷酸基团时,它就可以和种称为Cdc4的蛋白发生相互作用,然后被蛋白酶降解,从而导致细胞进入DNA合成期(S期),最后完成细胞分裂。研究者详尽而深入的工作揭示出:Sicl蛋白的每-次磷酸化都有助于与Cdc4的相互作用,但只有到第6次或6次以上,其结合力才达到与Cdc4稳固的结合。此外,如果给Sicl蛋白人为地装上一段外源氨基酸肽段,一次磷酸化就能使Sicl与Cdc4结合并导致其降解,这时Sicl控制细胞周期时间的功能就会丧失。这个研究成果很典型地揭示了细胞是如何通过数量的控制来实现其生命活动的。
古希腊着名的数学家毕达哥拉斯(Pythagoras)曾给后人留下过这样一个观点:“万物皆数也”。如果他的观点是正确的,作为大自然的杰作一生命,一定也是按照数学方式设计而成的。因此,数学不仅仅能够提升生命科学研究,使生命科学成为抽象的和定量的科学,而且是揭示生命奥秘的必由之路。
(声明:本文仅代表作者观点,不代表本站观点,仅做陈列之用)
[责编:大鱼]
郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。